R B
Flexbox: The Space Deal

A Detailed Study Guide to flex-grow ",
“flex-shrink , and flex-basis .

© Professor Solo f WebDevTnT. Educational use only.

Terms of the Space Deal

Once a container knows its direction and axes, flex items start negotiating for
space. Three properties run the table, deciding who stretches, who holds the
line, and who quietly adapts. Everything happens along the main axis.

“flex-grow “flex-shrink “flex-basis
How strongly an item How willing an item is The size an item
asks for more space. to be squished. wants to start at.

v

L
© Professor Solo [WebDevTnT. Educational use only. !N -I'-bu_ﬂkLM
ote

“flex-grow : Who Claims the Leftover Space

When there is extra space on the main axis, "flex-grow™ decides who claims it. All “grow’
values are compared as weights. A higher value gets a bigger slice of the extra space.

A @
GROW: O GROW: 1 . GROW: 2

[* A1l slots start with the same basis and shrink values */
.item { flex-basis: 7rem; flex-shrink: 1; }

.item-a { flex-grow: 0; } /* Takes no extra space */

.item-b { flex-grow: 1; } /* Takes one share */
.item-c { flex-grow: 2; } /* Takes two shares */ Ps

© Professor Solo f WebDevTnT. Educational use only. £ NotebookLM

“flex-grow in Action: Common Patterns

“flex-grow™ only matters when there is slack to distribute.
The distribution is always proportional to the grow values.

Pattern 1: Equal Partners Pattern 2: The Hero Item
.item { flex-grow: 1; } /* A1l items grow equally */ .item--hero { flex-grow: 3; } /* Middle item grows 3x faster */
i Jitem { flex-grow: 1; }
——— With “flex-grow: 1" on all items, they share L The middle item takes three parts of the extra
the extra space evenly. space for every one part the others get.

i

© Professor Solo / WebDevTnT. Educational use only.

“flex-shrink™ : Who Gives Up Space First

When the track is narrower than the sum of all bases, " flex-shrink’ controls who slims down.
A higher value means an item is more willing to be squished.

A B C

[SHRINK: 0 | SHRINK: 1 | | [SHRINK: 2

/* ALl slots start with the same basis and grow values */
.item { flex-basis: 8rem; flex-grow: 0; }

.item-a { flex-shrink: 0; } /* Resists shrinking */
.item-b { flex-shrink: 1; } /* Shrinks at a normal rate */
.item-c { flex-shrink: 2; } /* Shrinks twice as fast */

© Professor Solo [WebDevTnT. Educational use only. & NotebookLM

"flex-shrink: 0 — The Stubborn Item

The default " flex-shrink™ is "1, meaning items can be squished. Setting " flex-shrink: 0" tells an
item to hold its “flex-basis™ (or “width) as long as possible. A shrink value of zero means
“do not shrink me.”

[

Container
is too small

“flex-shrink: O
(Stubborn)

“flex-shrink: 1°
(Default)

|

Container
is too small

L

)

.track { display: flex; }
.card { flex-shrink: 1; } /% Default: can shrink */

.card--stubborn {
flex-shrink: ©; /* Holds its width =/

The stubborn card resists, so its

© Professor Solo [WebDevTnT. Educational use only.

neighbors take more of the hit.

I3

"flex-basis : The Starting Point

“flex-basis™ sets an item’s starting size along the main axis, before grow or shrink

negotiations adjust it. It is the preferred size an item asks for.

Basis vs. Width/Height

f flex-basis’ is set, it usually overrides 'width™ or "height along the main axis.
na flex-direction: row’, flex-basis™ acts like a starting ‘'width".
na flex-direction: column’, flex-basis acts like a starting height .

~

© Professor Solo [WebDevTnT. Educational use only.

A : = Each slot asks for 9rem of space
Each slot: flex: 0 0 9rem; «<—— " 314 won't grow or shrink.

(i

The flex Shorthand: The Master Contract

In production, we rarely write the three properties separately. The “flex" shorthand
combines them into a single, concise declaration.

.card {
flex: 1 1 12rem; }

“flex-grow" } T T “flex-basis’

‘flex—éhrink‘

Mastering this order (' grow , shrink , basis) is essential for efficient

and readable Flexbox code. ‘@

© Professor Solo /| WebDevTnT. Educational use only. &) NotebookLM

The Flexbox Codex: Common Recipes

Equal Partners

.item {
ElEne] =
}

Shorthand for "flex: 1 1 8°.Items
start at size 0 and grow to fill the
container equally. The classic "equal
columns” pattern.

Hero + Supporting ltems

.hero {
flex: 2 1 12rem;

}

Starts wider ("12rem) and grows
twice as fast as neighbors. A
dominant, flexible item.

2% Grow 1x Grow 1x Grow

> > >
S . .

© Professor Solo / WebDevTnT. Educational use only.

Fixed-Size Item

.fixed {
flex: 0 O 8rem;

].

No grow, no shrink, fixed basis of
“8rem . Creates arigid, infiexible item
that holds its size.

8rem Fixed

—y
8rem
Flxed

The Rules of Thumb

The entire negotiation can be simplified to these three rules.

‘grow’ = extra space “shrink’™ = not enough
space

“When the container is bigger “When the items are bigger

than the items, "flex-grow" than the container, "flex-shrink

distributes the surplus.” decides who concedes.”

© Professor Solo / WebDevTnT. Educational use only.

"basis = starting
point

“This is the initial size request,

before any growing or
shrinking occurs.”

i

&1 NotebookLM

Common Pitfalls & Traps

Forgetting Basis Defaults

flex: 1 is shorthand for flex: 1 1 0. The 0 basis is often what you want for equal
distribution, but forgetting it can lead to confusion if items have intrinsic sizes.

Confusing Grow with Percentages

flex-grow distributes available space, not total container space. An item with
flex-grow: 2 is not “twice the width” of an item with flex-grow: 1 —it just gets twice
the share of the leftover room.

Expecting Grow/Shrink to Work in a Void

flex-grow has no effect if there is no extra space. flex-shrink has no effect if there's
plenty of space. The properties only activate when the conditions are right.

v
© Professor Solo / WebDevTnT. Educational use only. = NH gum
ote

