S

‘Named Areas

Blueprints, Not Coordinates
R

d

Line numbers are precise. But they can also get... gross.

Using line numbers to place grid items works, but it can be difficult to read and even harder
to change. The layout’s intent is hidden in a series of coordinates.

.header { P —]

grid-column: 1 / 5;
grid-row: 1 / 2; \

h

.item-a {

S ——

e

.

grid-row: 2 / 4;

grid-column: 3 / 5;
grid-row: 2 [/ 3;

} o —

.footer {
grid-column: 1 / 5—,/
grid-row: 4 / 5;

3

H‘\h ‘;;
grid-column: 1 / 3; —\\ \\ﬁ&f'/

™
S
S

A ==, N7

}

A layout described as a map.

‘grid-template-areas’ lets you design a layout visually, right in your CSS. It’s for
creating readable layout intent.

= CONCEPTUAL MAP = header
header
sidebar > sidebar content
content
footer
footer

& NotebooklLM

Step 1: Define Areas on the Container

On the grid container, you use the grid-template-areas property. Each string
defines a row, and the names you use create the structure of your layout map.

— — — R — _

.layout {
display: grid;
grid-template-columns: 14rem 1fr;
grid-template-rows: auto 1fr auto;
grid-template-areas:

|"header header" | —> Row 1
|"sidebar content"} N B
["footer footer™;) > Row 3

&1 NotebookLM

Step 2: Assign Items to Areas

With the blueprint defined, you assign each grid item to a named area using the
‘grid-area’ property. Now your HTML can stay semantic, and the grid does the
layout work.

<heac

<asid

er>...</header> +———=

e>...</aside>

+ header { gric

e —

aside 1{ gric

<maln>...</maln> === maln { gric

<footer>...</footer> -p——m=—— footer { gric

=dEeals
=dLCal
Sd L Edl:
-area.

header; }
sidebar; }
content; %
footer; }

& NotebookLM

The Blueprint and the Blocks

You're not “placing items”. You're declaring a blueprint —

then assigning blocks to named areas.

grid-template-areas:
"header header”

"sidebar content"
*tooter Toofer:

d

header
grid-area: header

sidebar
grid-area: sidebar

content
grid-area: content

footer
grid-area: footer

&1 NotebookLM

Dots Mean “Empty”

You don’t have to use every cell in your grid. A period (.) in the blueprint
acts as a placeholder for an empty cell.

Before

-

grid-template-areas:

"header header"
"sidebar content"
S EO0 T e ToRkEe T

Sd”

After

-

grid-template-areas:

"header header"
gt content”
CaeYalsae Ao ohEENE -

header

header

sidebar content

footer

content

footer

- A1 NotebookLM

Swap blueprints. Watch the layout rewire itself.

M,

“Same HTML. Different maps.”

header

grid-area: header

-

B

grid-area: sidebar

sidebar W

[

content
grid-area: content

-

e

footer
grid-area: footer

ol —

" header

grid-area: header
e

> content

grid-area: content
oy

=
) sidebar

grid-area: sidebar

-
footer

grid-area: footer

i

&1 NotebookLM

The Code Behind the Change

Layout: classic

grid-template-areas:
"header header"
"sidebar content"
OO EE T ()0 T

Layout: hero

e

header

Inter

sidebar content

e ol

grid-template-areas:

"header header"
"content content”
"sidebar sidebar"
"footer footer";

footer

b

header

Inter

content

sidebar

footer

&1 NotebookLM

The Takeaway: Areas are the readable option.

e Great for page
layout

40

Q07

e Easy to refactor

e Less fragile than
line-number spaghett

& NotebooklLM

Readable layouts
refactor better.

p.s., keep learning!

&1 NotebookLM

