DESKTOP VIEWPORT

NAV_BAR

PRIMARY _CONTENT

SIDEBAR

Responsive Areas

ADAPTIVE LAYOUT
MEDIA_QUERY: @MEDIA(MAX-WIDTH: 768PX)

RESPONSIVE
BREAKPOINT

FOOTER

%

MOBILE VIEWPORT

NAV_BAR

PRIMARY_CONTENT

SIDEBAR

FOOTER

CONTENT
REORDERING

&1 NotebookLM



Same HTML. New blueprint.

You can rebuild the entire page layout at different breakpoints without
touching your HTML. This is where CSS Grid becomes unfair.

1208px Klath

300px

LAV

15r

ifr AL 2B0px

S08px

Desktop Blueprint

H T M L 7hBpx Breakpeint

29Bpx

388px

GEEpN

S88px

Mobile Blueprint

& NotebooklLM



The Two-Step Pattern

1. Define the desktop blueprint.
Establish your primary layout with grid-template-areas.

2. Override the blueprint in a media query.
Inside a breakpoint, redefine the grid-template-areas “map”.

The secret sauce: same elements, same grid-area names, different map.

& NotebooklLM



Example: The Desktop Blueprint

The grid-template-areas property defines the visual map.

Responsive Areas breskpoint. deskiep

deskiop lablod mnbile

f% breakpoint: desktop =/
gr ld-teaplate-coluems: ldrea 1fr
=it - $ 4

prod-reep late-areas:
“header header®™
"% ldebar cootent”™

“footer footer®

K Same elemenis, Same grld=-area names. Only the blusgrint changes

1 Stage

A header
gric-aree: haader

= ) sidebar content
grid-area: sidebar gnd-erea: eontant

Footer
grilk-ares; footer

The map 15 the layoul

The desktop layout uses two columns, placing the sidebar next to the content.

&1 NotebookLM



Example: The Mobile Blueprint

At a smaller viewport, a media query provides a new, single-column map.

Responsive Areas brestpoint; moblie

deckion jE2ili mickile

& breakpaint: cobile af
gribrionplate-coluensc 1fr
rif:tesplafe-riws: wute sote suto sulo
pilarTarplate=oreas:

“neadgrT

"eontent™

“gsdabar™

“Tooter™®

P .. . B B B I B —

Same alements. Same grild-ares names, Onty the bBlusprint changes

Stage

header
grid-area; header

o O S S R R T

P o .
content é P
erﬂ ares; centent

sidabar
grid- area: shiebar

footer
grid:aree: Tooter

The mag is the layout,

The sidebar is now re-positioned below the content. The HTML source order is unchanged.

& NotebookLM



Anatomy of the Refactor

WHAT CHANGES

e grid-template-columns: The
number and size of the grid's
columns.

e grid-template-areas: The
visual map that arranges the
named areas.

WHAT REMAINS THE SAME

e HTML Source Order: Content
stays semantic and logical.

e grid-area names: The labels
connecting HTML elements to
the grid map.

& NotebooklLM



Why This Beats DOM Reordering

This CSS-first approach is fundamentally more robust than legacy
methods. Layout becomes a CSS-only concern.

LI Lt

Your HTML stays semantic. Accessibility stays sane. CSS owns layout.
The document’s structure Screen readers follow the True separation of concerns is
remains logical, independent logical HTML order, providing respected. Layout is managed

of its visual presentation. a coherent user experience. exclusively in the stylesheet.

& NotebooklLM



From Layout to Layout System

Grid areas aren’t just readable. They're refactorable.

I
=i o

header

sidebar

content

’—-_-_--

header

content

sidebar

footer

. header

content

sidebar

: footer :

& NotebooklLM



“CSS changes the blueprint.
HTML stays semantic.”

p.s., keep learning!



