CSS Variable Wizardry

— SN GUDE —

-What Are CSS Variables?

- Custom properties that store specific values for
~ reuse throughout a stylesheet. Think of them as
'~ named ‘runes’ or(labels for values| not mini CSS
files. They turn your stylesheets into a living
control panel.

[__ —

/* Declaration in :root */
ROOEE
--rune-text-strong): #ffffff;

} ; "
. J |

&1 NotebookLM

Why They Matter
 \

/ Reusability
= (| Q.-// ", ﬁ\
Y — ety // /by \\

2

4 and ensures consistency.

sl s

@f - — 4)

Update a value in one place / ‘Instantly switch looks (e.q.,
to change it globally. Scalable SQEEEITIE light/dark mode) by changing

", " Refactoring becomes trivial. variable values on a parent
\ element.
\ N I ()\ o

The foundation of modern
design systems, allowing you
to build and evolve complex

Uls with confidence. P
S -

& NotebookLM

Declaring Global Runes in root

Define variables in the " :root selector to create global tokens accessible to your
entire application. This is the central source of truth for your design system.

u\\

//*/FFRWW%‘?FFM"H'#H::lfii‘z'.t‘ﬂ;‘* — f’gt'wﬂnahw-fwwsznr\‘

E :root { E

1|8 --page-bg: #0f172a; y

E --arcane-accent: #f97316; §
¢ j --glyph-border: #fdeéb8a; (
P --rune-text-strong: #ffffff; 3

7| --potion-liquid: #f97316; x

Y --potion-glow: 0 0 32px rgba(249, 115, 22, 0.65); %

ﬁL\} /;i

AL IOUNIZIFIRAMNYZNG

\\? LARMRG UV KYRI Y/ E U >

e
.

& NotebookLM

Using Variables with var() .

The “var() " function retrieves the value of a custom property. It's the incantation
used to summon a rune’s power. It literally means: “grab the computed value of
this variable from its cascade.”

ffr | '_i:'.::.\W -

/* In :root */
--potion-liquid: #f97316;

~

_.

'-';r.nﬁnanvwﬂuhﬁnrﬂuﬂ?. iﬁlarﬁf_ﬁrn?#n::n'ﬂ_ﬁm

- R H
Yls| /* In a component %/ ;
.potion-beaker {

background-color: v ;

EVMBMES TR NYHU H /R B —— SN S NYBAL T LR MR

— ™

L — W OP YR

l-ﬁuﬂlbﬂ-ﬁ-n‘ﬁ'ﬂc b ST G

&

& NotebookLM

The Cascade

Scope & The Cascade

Variables don't dodge the cascade—they use
it. Values are inherited from parent elements
unless a more specific (local) value is
defined.

Hierarchy of Power
* 1. ‘root” (Global): The base design tokens
for the entire document.

* 2. Component/Section (Local): Overrides
global values for a specific context, like a
.dark-theme" wrapper.

* 3. Element (Most Specific): The final
override, closest to the point of use. The
deepest spell wins.

& NotebookLM

Building a Color System

Use variables to define a clear, consistent, and maintainable color
palette. Changing a rune once can shift the entire lab’s mood.

|, --arcane-accent: #f97316; }

e

--potion-liquid: #22d3eeg;] [--glyph-border: #fde68a;] [-—runevtext-muted: #eEerﬂ;J

& NotebookLM

Local Overrides

Override a global variable inside a specific selector to change its value only within that scope.
Perfect for creating component variants without writing new properties.

Global Value (Inherited)

Beaker uses the default "-potion-liquid:

#22d3ee; " from its parent lab.

Local Override (Scoped)

-

/* Bottom-shelf variant: override only the liquid =/
.potion-card--lower-override {

--potion-liquid: HEEH89Y; /x neon pink */
}

""_. _ O O # \
[T AN P
Theme Switching with JavaScript e~
¢
Hand the wand to JavaScript to rewrite variable values at runtime.
JavaScript only updates the tokens; CSS and the cascade handle the rest.
' Aqua Lab — [Sunfire Lab —
YYPH PEPN | YNEM PEFN
=)42 - (¢)e (&
p o —) P (ee——
b las=sSsS— C I YC)
// 1S defines theme values
const THEMES = {
sun: { liquid: ‘#f97316', glow: '...' },
violet: { liquid: '#ec4899', glow: '...' }
)
// And sets them on the root element
function applyTheme(key) {
const theme = THEMES [key];
document.documentElement.style.setProperty(
'——potion-liquid', theme.liquid
)}
}
- /
A NotebookLM

Variables + Functions

Combine variables with CSS functions to create dynamic and responsive values.
Use them as unitless ‘intensity knobs’ for motion, shadows, and spacing.

.card:hover {
/¥ The spell x/

transform: translateY(calc(-1 * var(--lift-distance));

}

i

P

P& O M'xx
s, \'\-\.\\I
b
e
|
|
/
& NotebookLM

v B

Before vs. After Refactor

Refactoring to variables makes your CSS cleaner, more readable, and infinitely more maintainable.
You stop hardcoding colors like it's 2009 and start wielding design tokens.

_oded Values

Before: Hard-

.button-primary {

background: #ec4899;

}

.modal-header {

border-bottom: 2px solid #ec4899;

}

. link:hover {
color: #ec4899;

}

After: VVariable-Driven

:root {
yrand-accent: #ec4d899
}

.button-primary {
background: éa_rl-,-ﬁgar,_lﬂ-_ac;ent);

}

.modal-header {
border-bottom: 2px solid

; var (—brand-accent) ;

.link:hover {
; color: (var(--brand-accent);

uy vy

&1 NotebookLM

4 e s
A FFRF
al |
(e

R
Vil
AR
4
i 3
;/

Common Mistakes to Avoid "

Forgetting Fallbacks
Not providing a fallback value in "var() " can break styles if a variable is missing.

[color: var(——missing-var, black);

Unclear Naming

Vague names like 1-—c1' or '——main-red create confusion. Use semantic names
like Y——color-brand-accent’ or '-—color-status-danger?.

Storing Properties, Not Values
A variable stores only the value part, not an entire declaration.

[Incorrect: ——fancy-border: border: 3px solid hotpink;
Correct: —--fancy-border-color: hotpink;

ol 'l

Best Practices for Potent Magic

Consistent Naming Conventions: Use a clear system, such as
‘ [category]-[propertyl-[variant]".

(*Example*: ~—color-brand-primary , ——font-size-heading-1g |

Global Palette, Local Consumption: Define foundational brand tokens in
":root . Components should consume these tokens, not redefine them.

Component Defaults: Give components safe, self-contained default values.
This allows them to look correct even out of context, while parents can still
override them.

[*Example*: .card { ——card-bg: #0f172a;
background: var(--card-bg); }

o

& NotebookLM

asl:er the magn: Ty
ield the variables.

3 ||
”Should this be a rune? If you use it more thanl r.
| _once, the answer is: yes, apprentice.*" | |

