CSS Transform(er)s

Welcome to Lesson

up and change shape.

06 — where static boxes finally loosen

bookLM

Our Journey into a New Dimension

01

Mastering the
Flatlands

The foundational 2D transforms:
‘rotate’, "scale’, “translate’,
"skew’ .

03

The Pivot Point

Understanding “transform-origin’

and how it changes the
character of every move.

02

Entering the

Third Dimension

Leaving the 2D plane with
‘perspective’, “rotateX/Y/Z",
and “translateZ’.

04

The Golden Rule

of Assembly

Why the order of transforms
is critical for complex,
expressive motion.

Sequence A

translate? (208px)

transforw; translate(180px, 0)
rotate(A3deg) ;

(&)

@J —}{_‘:r
8

transform: retats(4Sdeg)
translate(l80px, 6);

Sequence B

&1 NotebookLM

Chapter 1: Mastering the Flatlands

! e B s o La ':- d P = d ‘ag - * 5
Spin it, Stretch it, Slide it, Skew It.

These four transforms are the
foundation of everything that
comes next. To make their
effects clear, we will always
show the element’s original
position as a “ghost"—a
“ghost”—a faint outline of
where it used to be. This visual
key will be used throughout
our journey.

A

. Transformed
/ State

— Original “Ghost” State

& NotebooklLM

Translate (Slide it) & Rotate (Spin it)

translate()

translate() shifts
an element on the X
and/or Y axis
without affecting the
layout flow of
elements around it.

.monkey A

transform: translate(70px,

}

Y

£

|
-30px

|

|

|

rotate()

rotate() turns an
element around an
axis. The default is

the Z axis, pointing
directly at the

viewer. The value is
In clockwise degrees.

.monkey A

transform: rotate(45deq);

}.

& NotebookLM

Scale (Grow it) & Skew (Tilt it)

scale() skew()

scale() changes an element's visual size without skew() slants an element along the X and/or Y axis.
altering its layout size. It's the "not-at-all-pushy" There is no skewZ () ; that requires matrix3d(),
way to grow. which is beyond our flatland scope.

T

i
E [

A

.monkey { .monkey {

transform: scale(0.65); transform: skew(-1l4deg, é6deg);

; h

& NotebookLM

Chapter 2: Entering the Third Dlmens

Time to leave the flatlands, folks. .

This is where our elements stop behaving
like stickers and start acting like objects in
actual space. We can now pose, tilt, flip, and r M

reveal surfaces our Ul never had before. xﬂﬁ?& f

''''''''''''''

The One Rule of 3D: Perspective is Everything

Perspective goes on the parent, not the thing rotating.

It's hard to maintain perspective from the inside.

Looks Flat & Kinda Sad True 3D Space

.monkey { perspective: 800px;
transform: rotateX(55deq); 3
F .monkey {
transform: rotateX(55deq);
h

& NotebookLM

The 3D Toolkit in Action

translateZ() rotateX() rotateY()

Pushes/pulls an element along the Z axis Tilts the element around the horizontal Turns the element around the vertical axis.
(toward/away from the viewer). axis. Bottom comes up for positive degrees. The classic “card flip"” effect.

.monkey 1 .monkey {
transform: translateZ(-120px); transform: rotateX(55deq);

.monkey {

transform: rotateY(-55deq);

} ¥ }

‘rotateZ () behaves just like the 2D “rotate() .
A NotebookLM

Chapter 3: The Pivot Point

The point from wence transformation occureth

Transforms don’t just
happen—they pivot from a
specific point.

The default is the element’s

: . — Default Origin
centre ((50% 50%).

((50% 50%)

Move that pivot, and the entire
motion changes character.

& NotebookLM

Three Origins, Three Personalities

Top Origin — The Hinge Left Origin — The Door Bottom-Right Origin —
The Dramatic Spin

Pivot at the top creates a classic Pivot on the left is perfect for card Pivot in the corner creates dynamic
dropdown hinge effect. reveals and door swings. motion with minimal rotation.

transform-origin: top center; transform-origin: center left,; transform-origin: bottom right;

transform: rotateX(4bdeg); transform: rotateY(-45deq); transform: rotateZ(25deg);

&1 NotebookLM

Chapter 4:
Transform Assemblies

e M e

| %! "'""“wf.u},, ' W.l

- %E | | N gt J m
|

Single transforms are cute.
Assemblies—stacking transforms in
segquence—are where motion
becomes expressive and

cinematic.

But there Is a golden rule you
must understand.

& NotebooklLM

The Golden Rule: Sequence is Everything

Same transforms. Different order. Completely different geometry.

Scale - Rotate Rotate - Scale
First, we squash the monkey vertically. Then, First, we rotate the original monkey. Then, we
we rotate the newly-squished geometry. squash along the monkey's new, rotated Y axis.

transform: scaleY(0.5) rotate(45deq); transform: rotate(45deg) scaleY(0.5);

& NotebooklLM

Why Order Matters: Transforms Rewrite Space

Each transform produces a new coordinate
grid. Every subsequent transform uses the
new, warped grid—not the original one. This is |

why the order is not interchangeable. | § BT e

Analogy: Think of it like moving and stretching
rubber sheets. Each action permanently warps
the space where the next action happens. | =

The Technical Truth: In mathematics, this is o e e | >
because matrix multiplication |5‘NOT ot e
commutative. A * B # B x A . is now squashed.

& NotebooklLM

Transitions Incoming

From A to B — Smooooothly

v

A

We've learned how to pose elements in impossible ways.
Now it's time for a tiny taste of motion—the magic that
connects a start state and an end state over time.

& NotebookLM

A Tiny Taste of Motion

Hover the goat — your first micro-transition.

Default State .goat {
transition: transform 350ms ease;

.goat:hover {
transform: translateY(-20px)
rotate(8deg) scale(1.05);

‘hover State

What’s Not Here Yet

We are not touching timing functions, complex

keyframes, delays, or staggering. Those live in the Next up: 07 - lon Drive: Transition Lab — where motion
next lesson. becomes deliberate, expressive, and neon-powered.

& NotebookLM

